
Arduino Uno

10.10.2012 © F. Schubert Arduino Uno 1

What means Arduino?

 Hardware Programming-software Community

10.10.2012 Arduino Uno 2

www.arduino.cc

Hardware

• Cheap, fast and open

• AVR Atmega 328 Microcontroller

• C-Programming

• Programming via USB

• Power supply via USB or external

10.10.2012 Arduino Uno 3

Arduino Uno Characteristics

• 32 kByte Flash Memory

• 1 kByte EEPROM

• 2 kByte SRAM

• 16 MHz Clock

• Inputs and Outputs
– 14 digital Inputs/Outputs

– 6 analog Inputs

– 6 PWM-Outputs

– I2C-Bus, serial Bus (TX/RX)

10.10.2012 Arduino Uno 4

Arduino Uno R3 Board

10.10.2012 Arduino Uno 5

Digital Inputs and Outputs

Analog Inputs

USB Connector

LED at Pin 13
Power LED

Microcontroller

TX / RX LEDs

External Power Supply

Reset Button

SCL SDA

Arduino Uno R3 Schematic

10.10.2012 6 Arduino Uno

Arduino-Software

10.10.2012 7

Check

(Compile)

New

Open

Save

Serial Monitor

ON

Status Field

Status Messages

Upload to

I/O Board

Arduino Uno

Installation

• Unzip of the Arduino-software

• Connection of the Arduino-board

• Installation of the drivers (administrator rights
needed)

• Run the Arduino-software

• Go on……..

10.10.2012 8 Arduino Uno

Connection of the Arduino-Board

10.10.2012 9

Power LED is on

LED at Pin 13 blinks

Arduino Uno

Installing drivers

10.10.2012 10 Arduino Uno

• Installing drivers for the Arduino Uno with Windows7, Vista, or XP:
• Plug in your board and wait for Windows to begin it's driver installation

process. After a few moments, the process will fail.
• Click on the Start Menu, and open up the Control Panel.
• While in the Control Panel, navigate to System and Security. Next, click on

System. Once the System window is up, open the Device Manager.
• Look under Ports (COM & LPT). Â You should see an open port named

"Arduino UNO (COMxx)"
• Right click on the "Arduino UNO (COmxx)" port and choose the "Update

Driver Software" option.
• Next, choose the "Browse my computer for Driver software" option.
• Finally, navigate to and select the Uno's driver file, named

"ArduinoUNO.inf", located in the "Drivers" folder of the Arduino Software
download (not the "FTDI USB Drivers" sub-directory).

• Windows will finish up the driver installation from there.

http://arduino.cc/en/Main/ArduinoBoardUno
http://arduino.cc/en/Main/ArduinoBoardUno
http://arduino.cc/en/Main/ArduinoBoardUno

Selecting the COM-Port

10.10.2012 11 Arduino Uno

Selecting the Board

10.10.2012 12 Arduino Uno

Status-Messages

10.10.2012 13

Upload done

Wrong serial port

Wrong board

Arduino Uno

Troubleshooting

• Press the reset-button on

 Arduino and try again

• Check the serial port (Connection and
number)

• Read the red text (Debugging output) at the
bottom to determine the problem

• The status area shows what is wrong

10.10.2012 14 Arduino Uno

Program Examples

10.10.2012 15 Arduino Uno

Program-Structure
• Declaration of variables

int ledPin = 13; // LED connected to digital pin 13

• Initialization
– setup() Set the inputs and outputs

void setup() // run once, when the sketch starts

{

 pinMode(ledPin, OUTPUT); // sets the digital pin as output

}

• Main program
– loop() Loop without end

void loop() // run over and over again

{

 digitalWrite(ledPin, HIGH); // sets the LED on

 delay(1000); // waits for a second

 digitalWrite(ledPin, LOW); // sets the LED off

 delay(1000); // waits for a second

}

10.10.2012 16 Arduino Uno

The blinking LED

10.10.2012 17 Arduino Uno

Hardware

10.10.2012 18 Arduino Uno

Preparing special pins

10.10.2012 19

Turn pin by 90 ° !!!

Arduino Uno

Power Supply
• From USB (Current is limited to 500 mA)

• External power supply (Uno switches
automatically) (VIN and GND or power jack)

 SMPS Battery

10.10.2012 20

Diecimila

Jumper to EXT

Arduino Uno

Rules for the Development

• First draw the circuit

• Program the Arduino before you connect the
inputs and outputs!

• If you have different power supplies connect the
different GNDs if necessary

• Connect and test the circuit on the solderless
board before you connect it to the Arduino

• Connect the power supplies when the circuit is
complete and tested

10.10.2012 21 Arduino Uno

Digital I/O
pinmode(pin, mode) - initialization
digitalWrite(pin, value)
int digitalRead(pin)

Analog I/O
analogReference(type) - initialization
int analogRead(pin)
analogWrite(pin, value) - PWM

10.10.2012 22

Digital and Analog Input/Output

Arduino Uno

Digital Output
• Make an external LED at pin 13 blinking

• Write a program for a

 traffic light with 3 LEDs

10.10.2012 23

Pin D13

Arduino Uno

VCC

GND

(from USB)

220 Ω

Pin D5

Arduino Uno

VCC

GND

(from USB)

Pin D4

Pin D6

Arduino Uno

Digital Input

• A digital input floats between 0 and 5 V, if it is
not connected

• A resistor pulls an input to 5V (pull up) or to
GND (pull down)

• Using a pullup-resistor the switch pushes the
input to GND

• Using a pulldown-resistor the switch pushes
the input to 5 V

10.10.2012 24 Arduino Uno

Digital Input

10.10.2012 25

Arduino Board

VCC

GND

Digital Input

 Pullup-resistor Pulldown-resistor

Arduino Board

VCC

GND

Digital Input

Arduino Uno

Tasks for Digital Input

• Connect a switch to digital input 2 of the
Arduino

• The switch controls the function of the traffic
light:

 High: Normal function

 Low: Yellow light blinking

10.10.2012 26 Arduino Uno

Digital Output expanded

• Maximum of an ATmega8 output:

 5 V and 40 mA

• The output can be expanded by a relay or a
transistor:

 Relay: 5 V type

 Transistor: Emitter to GND

 Base resistor

10.10.2012 27 Arduino Uno

Tasks for Digital Output expanded

• Connect the 12 V motor to pin 6 of the Arduino
first over a relay and then over a npn-transistor
(BD 139).

• For the motor use an external supply voltage
(don´t forget to connect the different GNDs!).

• Switch the motor on and off by a switch at pin 11
of the Arduino.

• The base resistor of the transistor is 1 kΩ.
• Protect the Arduino and the transistor by a

protective diode!

10.10.2012 28 Arduino Uno

10.10.2012 29

Pin D6

Arduino Uno

VCC

GND

(from USB)

M

+12 V

Pin D11

5 V

1N4149

4,7 kΩ

Arduino Uno

10.10.2012 30

Pin D6

Arduino Uno

VCC

GND

(from USB)

1 kΩ

M

+12 V

Pin D11

5 V

1N4149

BD139

4,7 kΩ

Arduino Uno

PWM Output

• Pulse Width Modulation

• Characteristics:

 Pulse width range

 Pulse period

 Voltage levels

• Average is like an analog voltage UAV

 UAV = width/period *(HIGH – LOW) + LOW

• For PWM use the analogWrite() instruction

10.10.2012 31

width

period

level

LOW

HIGH

Arduino Uno

Analog Input

• The ATmega 168 has 6 ADC inputs

• The maximum input range

 is from 0 V to 5 V

• The resolution is 10 bit

 (1024 values)

• The reference voltage is variable

10.10.2012 32 Arduino Uno

The ADC of the Arduino

10.10.2012 33

• 0 ≤ UIN ≤ UREF

• UREF : 1.1 V, 3.3 V and 5 V

analogReference(type)
Description
Configures the reference voltage used for analog input. The analogRead() function will
return 1023 for an input equal to the reference voltage. The options are:
DEFAULT: the default analog reference of 5 volts.
INTERNAL: an built-in reference, equal to 1.1 volts on the ATmega168 and 2.56 volts on the
ATmega8.
EXTERNAL: the voltage applied to the AREF pin is used as the reference.
Parameters
type: which type of reference to use (DEFAULT, INTERNAL, or EXTERNAL).

Arduino Uno

Characteristics of the Voltmeter

• High-impedance input

• Input-range: -5 V to + 5 V

• UREF = 5 V

• Output on LCD :

10.10.2012 34

+ 2 . 7 3 V V - 8 7 6 m

Arduino Uno

LCD

Blockdiagram of the Voltmeter

10.10.2012 35

Pre-Amp Arduino UIN

Arduino Uno

Protection
Circuit

Pre-Amplifier (Level-Shifter)

10.10.2012 36

U
REF

U
OUT

1
R

U
IN

R 2

TL072 TL072

Arduino Uno

Calculation of the PreAmp

10.10.2012 37

21

1

21

2

RR

R
U

RR

R
UU

OUTINREF

 UIN = 5 V, UOUT = 0 V:

21

2
5

RR

R
VU

REF

 UIN = -5 V, UOUT = 5 V:

21

1

21

2

0
55

RR

R
V

RR

R
VU

21

2

21

1

21

2
555

RR

R
V

RR

R
V

RR

R
V

21

2

21

1

21

2

RR

R

RR

R

RR

R

=>:
21

2 RR ; =>: V
RR

R
VU

REF

3

5

2
5

22

2

Arduino Uno

Pre-Amplifier (Level-Shifter)

10.10.2012 38

U
REF

U
OUT

U
IN

TL072 TL072

5 V

1 MΩ 10 KΩ

20 KΩ 10 KΩ

Arduino Uno

Protection Circuit

10.10.2012 39

Arduino Board

U
OUT BAT 85

5 V

1 KΩ BAT 85

470 nF

Pin A2

Arduino Uno

Connection of the LCD-Modules

10.10.2012 40 Arduino Uno

16 x 2 8 x 2

Pins of the Adaptor

10.10.2012 41

LCD-Module Description Symbol

1 GND VSS

2 + 5 V VDD

3 Contrast 0,3 … 1,2 V VEE

4 H = Data / L = Command RS

5 H = Read / L = Write R/W

6 Enable E

7 LSB (8 Bit) D0

8 D1

9 D2

10 D3

11 LSB (4 Bit) D4(D0)

12 D5(D1)

13 D6(D2)

14 MSB D7(D3)

Arduino Uno

20-Pin-Adapter

2

1

N.C.

3

N.C.

5

N.C.

N.C.

N.C.

N.C.

12

11

14

13

Arduino Uno
Digital pin

GND

5 V

N.C.

7

N.C.

6

N.C.

N.C.

N.C.

N.C.

5

4

3

2

Program Example for the LCD-Module

10.10.2012 42 Arduino Uno

LiquidCrystal Library
This library allows an Arduino board to control
LiquidCrystal displays (LCDs) based on the XXX
chipset, which is found on most text-based
LCDs.
The library works with in either 4- or 8-bit mode
(i.e. using 4 or 8 data lines in addition to the
rs, rw, and enable control lines).
Note: We use 4-bit mode.

Function
LiquidCrystal()
begin()
clear()
home()
setCursor()
write()
print()
……..

file:///D:/HAW/LEHRE/arduino-0015-win/arduino-0015-win/arduino-0015/reference/LiquidCrystalConstructor.html
file:///D:/HAW/LEHRE/arduino-0015-win/arduino-0015-win/arduino-0015/reference/LiquidCrystalConstructor.html
file:///D:/HAW/LEHRE/arduino-0015-win/arduino-0015-win/arduino-0015/reference/LiquidCrystalClear.html
file:///D:/HAW/LEHRE/arduino-0015-win/arduino-0015-win/arduino-0015/reference/LiquidCrystalClear.html
file:///D:/HAW/LEHRE/arduino-0015-win/arduino-0015-win/arduino-0015/reference/LiquidCrystalHome.html
file:///D:/HAW/LEHRE/arduino-0015-win/arduino-0015-win/arduino-0015/reference/LiquidCrystalSetCursor.html
file:///D:/HAW/LEHRE/arduino-0015-win/arduino-0015-win/arduino-0015/reference/LiquidCrystalSetCursor.html
file:///D:/HAW/LEHRE/arduino-0015-win/arduino-0015-win/arduino-0015/reference/LiquidCrystalWrite.html
file:///D:/HAW/LEHRE/arduino-0015-win/arduino-0015-win/arduino-0015/reference/LiquidCrystalPrint.html

Characteristics of the Thermometer

• NTC:

• Input-range: 0 °C to 100 °C

• Buzzer alarm, if temperature encreases 90 °C

• Output on LCD :

10.10.2012 43

4 2 C

1 0 8 ° F

°

Temperature / °C Resistor / kΩ

0 27,25

50 4,162

100 0,949

Arduino Uno

Tasks for the Thermometer

• Download the datasheet of the NTC-resistor

• Linearize the characteristic of the NTC in the
range from 0 °C to 100 °C by connecting a
serial resistor RL = R50 of the NTC.

• Develop the resulting characteristic

• Substitute the resulting characteristic by a
straight line mT = f(Θ)

10.10.2012 44

LΘ

Θ

L
RR

R
m

Arduino Uno

10.10.2012 45

0

5

10

15

20

25

30

0 20 40 60 80 100

RΘ/kΩ

Θ/°C

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

0 20 40 60 80 100

mL

mT

Θ/°C -16

-14

-12

-10

-8

-6

-4

-2

0

2

4

0 20 40 60 80 100

Deviation/%

Θ/°C

Θ/°C RΘ/kΩ mL mT Deviation/%

0 27,25 0,86750287 0,86761173 -0,01254866

10 17,95 0,81177641 0,79980778 1,47437473

20 12,09 0,74390844 0,73200384 1,60027727

30 8,314 0,66639949 0,6641999 0,33006975

40 5,829 0,58342508 0,59639596 -2,2232299

50 4,162 0,5 0,52859202 -5,71840461

60 3,022 0,42065702 0,46078808 -9,54009218

70 2,229 0,34877171 0,39298414 -12,6766107

80 1,669 0,28622878 0,3251802 -13,6084935

90 1,266 0,23323508 0,25737626 -10,3505803

100 0,9737 0,18959441 0,18957232 0,01164949

Arduino Uno

10.10.2012 46

Arduino Board

VCC

GND

(from USB)

Pin A2

5 V

NTC

LCD-Module

R L

7

Arduino Uno

#include <LiquidCrystal.h>

LiquidCrystal lcd(12, 11, 10, 5, 4, 3, 2);

int inputPin = 2;

int readVoltage;

float outputValue;

float m;

void setup() {

 readVoltage = 0;

 outputValue = 0;

 m = 0.143f; //slope of our approximated line function

 lcd.begin(8, 2);

 Serial.begin(9600);

}

void loop() {

 readVoltage = 1023 - analogRead(inputPin);

 //the input value is inverted so that it increases with temperature

 outputValue = m*((float)readVoltage - 223.0f) + 11.1f;

 // the line function maps the correct temperatures to our input

 lcd.setCursor(0,0);

 delay(100);

 lcd.print(outputValue,DEC);

 lcd.print(".");

 lcd.print((int)(outputValue*100)%100,DEC);

 lcd.print(" C ");

 delay(100);

 Serial.println(outputValue);
}

10.10.2012 47 Arduino Uno

Tasks for Analog Input and PWM Output

• Dimm an LED with a potentiometer

• Check the function of the multicolour LED

• Write a program for controlling the colour of the
multicolour LED with a potentiometer

• Control the rpm of the DC-motor with a
potentiometer

• Sense the dark with the photoresistor

• Write a program for the piezo buzzer to play a
melody

10.10.2012 48 Arduino Uno

10.10.2012 49

int potiPin = 2;

int bluePin1 = 6;

int bluePin2 = 3;

int greenPin = 9;

int redPin = 5;

int readVoltage;

void setup() {

 readVoltage = 0;

 pinMode(bluePin1,OUTPUT);

 pinMode(bluePin2,OUTPUT);

 pinMode(greenPin,OUTPUT);

 pinMode(redPin,OUTPUT);

 Serial.begin(9600);

}

void loop() {

 int i=0;

 readVoltage = analogRead(potiPin);

 if(readVoltage/128 >= 6){

 analogWrite(redPin, 255);

 analogWrite(greenPin, (128*7 - readVoltage)*2);

 analogWrite(bluePin1, 0);

 analogWrite(bluePin2, 0);

 }

 else{

 if(readVoltage/128 >= 5 && readVoltage/128 < 6){

 analogWrite(redPin, (readVoltage - 128*5)*2);

 analogWrite(greenPin, 255);

 analogWrite(bluePin1, 0);

 analogWrite(bluePin2, 0);

 }

 else{

 if(readVoltage/128 >= 4 && readVoltage/128 < 5){

 analogWrite(redPin, 0);

 analogWrite(greenPin, 255);

 analogWrite(bluePin1, (128*5 - readVoltage)*2);

 analogWrite(bluePin2, 0);

 }

else{

 if(readVoltage/128 >= 4 && readVoltage/128 < 5){

 analogWrite(redPin, 0);

 analogWrite(greenPin, (128*5 - readVoltage)*2);

 analogWrite(bluePin1, 255);

 analogWrite(bluePin2, 0);

 }

 else{

 if(readVoltage/128 >= 3 && readVoltage/128 < 4){

 analogWrite(redPin, (128*4 - readVoltage)*2);

 analogWrite(greenPin, 0);

 analogWrite(bluePin1, 255);

 analogWrite(bluePin2, 0);

 }

 else{

 if(readVoltage/128 >= 2 && readVoltage/128 < 3){

 analogWrite(redPin, 255);

 analogWrite(greenPin, (128*3 - readVoltage)*2);

 analogWrite(bluePin1, 255);

 analogWrite(bluePin2, 0);

 }

 else{

 analogWrite(redPin, 255);

 analogWrite(greenPin, 255);

 analogWrite(bluePin1, 255);

 analogWrite(bluePin2, 0);

 }

 }

 }

 }

 }

 }

 if(readVoltage/128 >= 4 && readVoltage/128 < 7){

 analogWrite(greenPin, (7*128 - readVoltage)/4);

 }

 else{

 analogWrite(greenPin, 0);

 }

 Serial.println(readVoltage/128);

}

Arduino Uno

10.10.2012 50

int photoDiode = 2;

int buzzerPin = 3;

int readVoltage;

void setup() {

 readVoltage = 0;

 pinMode(buzzerPin,OUTPUT);

 Serial.begin(9600);

}

void loop() {

 readVoltage = analogRead(photoDiode);

 if(readVoltage > 60) {

 analogWrite(buzzerPin,40);

 delay(1000);

 analogWrite(buzzerPin,80);

 delay(200);

 analogWrite(buzzerPin,120);

 delay(500);

 analogWrite(buzzerPin,200);

 delay(100);

 }

 Serial.println(readVoltage);

}

Arduino Uno

Notes

10.10.2012 51

note frequency/Hz period/μs

c 261 3830

d 294 3400

e 329 3938

f 349 2864

g 392 2550

a 440 2272

b 493 2038

C 523 1912

Arduino Uno

10.10.2012 52

Pin D6

Arduino Board

VCC

GND

(from USB)

1 kΩ

M

+12 V

Pin A2

5 V

1N4001

BD139

10 kΩ

Arduino Uno

10.10.2012 53

Arduino Board

VCC

GND

(from USB)

Pin A2

5 V

R L

220 Ω

Arduino Uno

Piezo Buzzer as Sensor

10.10.2012 54

Tasks
• Piezo-sensor: input value -> serial out
• Piezo-sensor: input value -> buzzer frequency

Introduction
• Piezo buzzers exhibit the reverse piezoelectric effect.
• The normal piezoelectric effect is generating electricity
 from squeezing a crystal.
• Can get several thousand volts, makes a spark

Piezo Knock Sensor
• To read a piezo you can connect it to an analog input, but: - You
 need to drain off any voltage with a resistor
• The protection diodes inside the AVR chip protect against the high
 voltage

Arduino Uno

10.10.2012 55

Arduino Board

VCC

GND

(from USB)

Pin 2

5 V

1 MΩ

Arduino Uno

Servo Motor

10.10.2012 56

Servos are DC motors with built in gearing and feedback control
loop circuitry.

Servo Wiring
All servos have three wires:
 Black or Brown is for ground.
 Red is for power (~4.8-6V).
 Yellow, Orange, or White is the signal wire (3-5V).

Tasks
• Pot position 0…180° to servo position and LCD
• Railroad crossing barrier
• Railroad crossing sign (blinking, beep)

Arduino Uno

Library for the Servo Motor 1

10.10.2012 57

Servo library
This library allows an Arduino board to control RC servo motors. Servos have integrated
gears and a shaft that can precisely controlled. Standard servos allow the shaft to be
positioned at various angles, usually between 0 and 180 degrees. Continuous rotation
servos allow the rotation of the shaft to be set to various speeds.

As of Arduino 0017, the Servo library supports up to 12 motors on most Arduino boards
and 48 on the Arduino Mega. On boards other than the Mega, use of the library disables
analogWrite() (PWM) functionality on pins 9 and 10, whether or not there is a Servo on
those pins. On the Mega, up to 12 servos can be used without interfering with PWM
functionality; use of 12 to 23 motors will disable PWM on pins 11 and 12.

In Arduino 0016 and earlier, the Servo library uses functionality built in to the hardware,
and works only on pins 9 and 10 (and does not work on the Arduino Mega). In this case,
if only one servo is used, the other pin cannot be used for normal PWM output with
analogWrite(). For example, in Arduino 0016 and earlier, you can't have a servo on pin 9
and PWM output on pin 10.

Arduino Uno

Library for the Servo Motor 2

10.10.2012 58

Circuit
Servo motors have three wires: power, ground, and signal. The power wire is typically
red, and should be connected to 5V power supply. The ground wire is typically black or
brown and should be connected to a ground pin. The signal pin is typically yellow,
orange or white and should be connected to a digital pin on the Arduino board. Note
servos draw considerable power, so if you need to drive more than one or two, you need
a separate power supply (not the +5V pin on your Arduino!).

Functions
attach()
write()
read()
attached()
detach()

Arduino Uno

http://arduino.cc/en/Reference/ServoAttach
http://arduino.cc/en/Reference/ServoWrite
http://arduino.cc/en/Reference/ServoRead
http://arduino.cc/en/Reference/ServoAttached
http://arduino.cc/en/Reference/ServoDetach

Program Example for the Servo Motor

10.10.2012 59

// Sweep
// by BARRAGAN <http: //barraganstudio.com>

#include <Servo.h>
Servo myservo; // create servo object to control a servo
int pos = 0; // variable to store the servo position

void setup()
{
 myservo.attach(9); // attaches the servo on pin 9 to the servo object
}

void loop()
{
 for(pos = 0; pos < 180; pos += 1) // goes from 0 degrees to 180 degrees
 { // in steps of 1 degree
 myservo.write(pos); // tell servo to go to position in variable 'pos'
 delay(15); // waits 15ms for the servo to reach the position
 }
 for(pos = 180; pos>=1; pos-=1) // goes from 180 degrees to 0 degrees
 {
 myservo.write(pos); // tell servo to go to position in variable 'pos'
 delay(15); // waits 15ms for the servo to reach the position
 }
}

Arduino Uno

10.10.2012 60

Pin D6

Arduino Board

VCC

GND

(from USB)

M

+5 V

Pin A2

5 V

10 kΩ
Servo

red

brown

orange

Arduino Uno

Communication

• The I2C Bus

• Serial I/O

10.10.2012 61 Arduino Uno

The I2C Bus

10.10.2012 62

Introduction
The I2C-bus is a de facto world standard that is now implemented in over 1000 different
ICs manufactured by more than 50 companies. Additionally, the versatile I2C-bus is used
in a variety of control architectures such as System Management Bus (SMBus), Power
Management Bus (PMBus), Intelligent Platform Management Interface (IPMI), and
Advanced Telecom Computing Architecture (ATCA).

I2C-bus features
In consumer electronics, telecommunications and industrial electronics, there are often
many similarities between seemingly unrelated designs. For example, nearly every system
includes:
• Some intelligent control, usually a single-chip microcontroller
• General-purpose circuits like LCD and LED drivers, remote I/O ports, RAM,
 EEPROM, real-time clocks or A/D and D/A converters
• Application-oriented circuits such as digital tuning and signal processing circuits for
 radio and video systems, temperature sensors, and smart cards

NXP Semiconductors: UM10204 I2C-bus specification and user manual

Arduino Uno

To exploit these similarities to the benefit of both systems designers and equipment

manufacturers, as well as to maximize hardware efficiency and circuit simplicity, Philips

Semiconductors (now NXP Semiconductors) developed a simple bidirectional 2-wire bus

for efficient inter-IC control. This bus is called the Inter IC or I2C-bus. All I2C-bus

compatible devices incorporate an on-chip interface which allows them to communicate

directly with each other via the I2C-bus. This design concept solves the many interfacing

problems encountered when designing digital control circuits.

10.10.2012 63

NXP Semiconductors: UM10204 I2C-bus specification and user manual

Arduino Uno

Here are some of the features of the I2C-bus:

• Only two bus lines are required; a serial data line (SDA) and a serial clock line (SCL).

• Each device connected to the bus is software addressable by a unique address and
 simple master/slave relationships exist at all times; masters can operate as master-
 transmitters or as master-receivers.

• It is a true multi-master bus including collision detection and arbitration to prevent
 data corruption if two or more masters simultaneously initiate data transfer.

• Serial, 8-bit oriented, bidirectional data transfers can be made at up to 100 kbit/s in
 the Standard-mode, up to 400 kbit/s in the Fast-mode, up to 1 Mbit/s in Fast-mode
 Plus, or up to 3.4 Mbit/s in the High-speed mode.

• On-chip filtering rejects spikes on the bus data line to preserve data integrity.

• The number of ICs that can be connected to the same bus is limited only by a
 maximum bus capacitance. More capacitance may be allowed under some conditions.

10.10.2012 64

NXP Semiconductors: UM10204 I2C-bus specification and user manual

Arduino Uno

Definition of I2C-bus terminology

Transmitter the device which sends data to the bus

Receiver the device which receives data from the bus

Master the device which initiates a transfer, generates clock signals and terminates a
transfer

Slave the device addressed by a master

Multi-master more than one master can attempt to control the bus at the same time
without corrupting the message

Arbitration procedure to ensure that, if more than one master simultaneously tries to
control the bus, only one is allowed to do so and the winning message is y device addressed
 is considered a slave.

Synchronization procedure to synchronize the clock signals of two or more devices

10.10.2012 65

NXP Semiconductors: UM10204 I2C-bus specification and user manual

Arduino Uno

The I2C-bus protocol

Two wires, serial data (SDA) and serial clock (SCL), carry information between the devices

connected to the bus. Each device is recognized by a unique address (whether it is a

microcontroller, LCD driver, memory or keyboard interface) and can operate as either a

transmitter or receiver, depending on the function of the device. An LCD driver may be

only a receiver, whereas a memory can both receive and transmit data. In addition to

transmitters and receivers, devices can also be considered as masters or slaves when

performing data transfers. A master is the device which initiates a data transfer on the bus

and generates the clock signals to permit that transfer. At that time, any device addressed

Is considered a slave.

The I2C-bus is a multi-master bus. This means that more than one device capable of

controlling the bus can be connected to it. As masters are usually microcontrollers, let’s

consider the case of a data transfer between two microcontrollers connected to the

I2C-bus.

10.10.2012 66

NXP Semiconductors: UM10204 I2C-bus specification and user manual

Arduino Uno

10.10.2012 67

NXP Semiconductors: UM10204 I2C-bus specification and user manual

SDA and SCL logic levels
Due to the variety of different technology devices (CMOS, NMOS, bipolar) that can be
connected to the I2C-bus, the levels of the logical ‘0’ (LOW) and ‘1’ (HIGH) are not fixed
and depend on the associated level of VDD. Input reference levels are set as 30 % and 70 %
of VDD; VIL is 0.3VDD and VIH is 0.7VDD.
Some legacy device input levels were fixed at VIL = 1.5 V and VIH = 3.0 V, but all new devices
require this 30 %/70 % specification.

Data validity
The data on the SDA line must be stable during the HIGH period of the clock. The HIGH or
LOW state of the data line can only change when the clock signal on the SCL line is LOW.
One clock pulse is generated for each data bit transferred.

Arduino Uno

10.10.2012 68

NXP Semiconductors: UM10204 I2C-bus specification and user manual

START and STOP conditions
All transactions begin with a START (S) and can be terminated by a STOP (P). A HIGH to
LOW transition on the SDA line while SCL is HIGH defines a START condition. A LOW to
HIGH transition on the SDA line while SCL is HIGH defines a STOP condition.
START and STOP conditions are always generated by the master. The bus is considered to
be busy after the START condition. The bus is considered to be free again a certain time
after the STOP condition. The bus stays busy if a repeated START (Sr) is generated instead
of a STOP condition. In this respect, the START (S) and repeated START (Sr) conditions are
functionally identical.
For the remainder of this document, therefore, the S symbol will be used as a generic
term to represent both the START and repeated START conditions, unless Sr is articularly
relevant.

Detection of START and STOP conditions by devices connected to the bus is easy if they
incorporate the necessary interfacing hardware. However, microcontrollers with no such
interface have to sample the SDA line at least twice per clock period to sense the
transition.

Arduino Uno

10.10.2012 69

NXP Semiconductors: UM10204 I2C-bus specification and user manual

Byte format
Every byte put on the SDA line must be 8 bits long. The number of bytes that can be
transmitted per transfer is unrestricted. Each byte has to be followed by an Acknowledge
bit. Data is transferred with the Most Significant Bit (MSB) first. If a slave cannot receive or
transmit another complete byte of data until it has performed some other function, for
example servicing an internal interrupt, it can hold the clock line SCL LOW to force the
master into a wait state. Data transfer then continues when the slave is ready for another
byte of data and releases clock line SCL.

Arduino Uno

10.10.2012 70

NXP Semiconductors: UM10204 I2C-bus specification and user manual

Acknowledge (ACK) and Not Acknowledge (NACK)
The acknowledge takes place after every byte. The acknowledge bit allows the receiver to
signal the transmitter that the byte was successfully received and another byte may be
sent. All clock pulses including the acknowledge 9th clock pulse are generated by the
master.
The Acknowledge signal is defined as follows: the transmitter releases the SDA line
during the acknowledge clock pulse so the receiver can pull the SDA line LOW and it
remains stable LOW during the HIGH period of this clock pulse (see Figure 4). Set-up and
hold times (specified in Section 6) must also be taken into account.
When SDA remains HIGH during this 9th clock pulse, this is defined as the Not
Acknowledge signal. The master can then generate either a STOP condition to abort the
transfer, or a repeated START condition to start a new transfer. There are five conditions
that lead to the generation of a NACK:
1. No receiver is present on the bus with the transmitted address so there is no device to
 respond with an acknowledge.
2. The receiver is unable to receive or transmit because it’s performing some real-time
 function and is not ready to start communication with the master.
3. During the transfer the receiver gets data or commands that it does not understand.
4. During the transfer, the receiver cannot receive any more data bytes.
5. A master-receiver needs to signal the end of the transfer to the slave transmitter.

Arduino Uno

10.10.2012 71

NXP Semiconductors: UM10204 I2C-bus specification and user manual

The slave address and R/W bit
Data transfers follow the format shown in the left figure. After the START condition (S), a
slave address is sent. This address is 7 bits long followed by an eighth bit which is a data
direction bit (R/W)—a ‘zero’ indicates a transmission (WRITE), a ‘one’ indicates a request
for data (READ) (refer to the right figure). A data transfer is always terminated by a STOP
condition (P) generated by the master. However, if a master still wishes to communicate
on the bus, it can generate a repeated START condition (Sr) and address another slave
without first generating a STOP condition. Various combinations of read/write formats are
then possible within such a transfer.

Arduino Uno

10.10.2012 72

NXP Semiconductors: UM10204 I2C-bus specification and user manual

START byte
Microcontrollers can be connected to the I2C-bus in two ways. A microcontroller with an
on-chip hardware I2C-bus interface can be programmed to be only interrupted by requests
from the bus. When the device does not have such an interface, it must constantly monitor
the bus via software. Obviously, the more times the microcontroller monitors, or polls the
bus, the less time it can spend carrying out its intended function.
There is therefore a speed difference between fast hardware devices and a relatively slow
microcontroller which relies on software polling.
In this case, data transfer can be preceded by a start procedure which is much longer than
normal. The start procedure consists of:
• A START condition (S)
• A START byte (0000 0001)
• An acknowledge clock pulse (ACK)
• A repeated START condition (Sr).

Arduino Uno

10.10.2012 73

NXP Semiconductors: UM10204 I2C-bus specification and user manual

After the START condition S has been transmitted by a master which requires bus access,
the START byte (0000 0001) is transmitted. Another microcontroller can therefore sample
the SDA line at a low sampling rate until one of the seven zeros in the START byte is
detected. After detection of this LOW level on the SDA line, the microcontroller can switch
to a higher sampling rate to find the repeated START condition Sr which is then used for
synchronization.
A hardware receiver will reset on receipt of the repeated START condition Sr and will
therefore ignore the START byte.
An acknowledge-related clock pulse is generated after the START byte. This is present
only to conform with the byte handling format used on the bus. No device is allowed to
acknowledge the START byte.

Bus clear
In the unlikely event where the clock (SCL) is stuck LOW, the preferential procedure is to
reset the bus using the HW reset signal if your I2C devices have HW reset inputs. If the
I2C devices do not have HW reset inputs, cycle power to the devices to activate the
mandatory internal Power-On Reset (POR) circuit.
If the data line (SDA) is stuck LOW, the master should send 9 clock pulses. The device that
held the bus LOW should release it sometime within those 9 clocks. If not, then use the
HW reset or cycle power to clear the bus.

Arduino Uno

The I2C Bus Library

10.10.2012 74

Wire Library
This library allows you to communicate with I2C / TWI devices. On the Arduino, SDA (data
line) is on analog input pin 4, and SCL (clock line) is on analog input pin 5.

Functions
begin()
begin(address)
requestFrom(address, count)
beginTransmission(address)
endTransmission()
send()
byte available()
byte receive()
onReceive(handler)
onRequest(handler)

Arduino Uno

file:///D:/HAW/LEHRE/arduino-0015-win/arduino-0015-win/arduino-0015/reference/WireBegin.html
file:///D:/HAW/LEHRE/arduino-0015-win/arduino-0015-win/arduino-0015/reference/WireBegin.html
file:///D:/HAW/LEHRE/arduino-0015-win/arduino-0015-win/arduino-0015/reference/WireRequestFrom.html
file:///D:/HAW/LEHRE/arduino-0015-win/arduino-0015-win/arduino-0015/reference/WireBeginTransmission.html
file:///D:/HAW/LEHRE/arduino-0015-win/arduino-0015-win/arduino-0015/reference/WireEndTransmission.html
file:///D:/HAW/LEHRE/arduino-0015-win/arduino-0015-win/arduino-0015/reference/WireSend.html
file:///D:/HAW/LEHRE/arduino-0015-win/arduino-0015-win/arduino-0015/reference/WireAvailable.html
file:///D:/HAW/LEHRE/arduino-0015-win/arduino-0015-win/arduino-0015/reference/WireReceive.html
file:///D:/HAW/LEHRE/arduino-0015-win/arduino-0015-win/arduino-0015/reference/WireOnReceive.html
file:///D:/HAW/LEHRE/arduino-0015-win/arduino-0015-win/arduino-0015/reference/WireOnRequest.html

Connection of I2C Master and Slave

10.10.2012 75

2,2 KΩ

5 V

SDA

SCL

Arduino Uno

I2C Bus Extender 82B715

10.10.2012 76

DESCRIPTION
The 82B715 is a bipolar integrated circuit intended for application in I2C bus systems. While
retaining all the operating modes and features of the I2C system it permits extension of the
practical separation distance between components on the I2C bus by buffering both the
data (SDA) and the clock (SCL) lines.

The I2C bus capacitance limit of 400pF restricts practical communication distances to a few
meters. Using one 82B715 at each end of longer cables reduces the cable loading
capacitance on the I2C bus by a factor of 10 times and may allow the use of low cost
general purpose wiring to extend bus lengths.

PHILIPS Data Sheet

Arduino Uno

Minimum Sub-System with 82B715

10.10.2012 77

PHILIPS Data Sheet

Arduino Uno

Tasks for I2C

• The master sends a sign to the slave

• The slave answers with the next ASCII sign

• Input of the sign via keyboard of the PC

• Output to LCD (first row: sign of the master;
second row: sign from the slave)

• Watch the signals on SDA and SCL on a scope
(sending a repeating a signal continuously)

10.10.2012 78 Arduino Uno

Hardware

10.10.2012 79 Arduino Uno

