Arduino Uno

10.10.2012 © F. Schubert Arduino Uno

What means Arduino:

Hardware Programming-software Community

2@ Blink | Arduino 1.0.1
Datei Bearbeiten Sketch Tools Hife

ﬁ‘)n’ -
44 Pin 13 has an LED connected on most Arduino boards.
A7 give it a name:
int led = 13:
S TXN.
rxwmw - ARDUINO A4 the setup routine runs once when you press reset:
5o N 4 woid setup(] {
8 /¢ initialize the digital pin as an output.
! pinMode (led, OUTFUT);
'
/¢ the loop routine runs owver and owver again forewer:
woid loopi) {
digitallirite(led, HIGH): AF turn the LED on (HIGH iz the wvoltag
delay(l000) A4 wait for a second
digitalWrite (led, LOW); /¢ turn the LED off by making the wolt
delay(1000] 2 J¢ wait for a second
} =
A

www.arduino.cc

10.10.2012 Arduino Uno

Arduino is an open-source electronics prototyping
platform based on flexible, easy-to-use hardware and
software. It's intend designers, hobbyists,

and anyone interested in c

or artis

ing interactive objects
or enviranments

Arduino can sense the environment by receiving input
from a variety of sensors and can affect its surroundings
by controlling lights, motors, and other actuators. The
microcontroller on the board is programmed using the
Arduino programming language (based on Wiring) and
the Arduino development environment (based on
Processing). Arduino projects can be stand-alone or they
can communicate with software running on a computer
(e.g. Flash, Processing, MaxMSP).

‘The boards can be built by hand or purchased

the software can for free.
‘The hardware reference designs (GAD files) are
available under an open-source license, you are free to
adapt them to your needs.

Arduino received an Honorary Mention in the Digital
Communities section of the 2006 Ars Electronica Prix.
‘The Arduine team is: Massimo Banzi, David Cuartielles,
‘Tom Igoe, Gianluca Martino, and David Mellis. Credits

‘Photo by the Arduino Team

ARDUINO PLAYGROUND

The playground is a publicly-editable wiki
about Arduing
peaisand Qo o The Arduino Playground
Installing Arduino on Linux
Board Setup and Configuration Welcome to the Arduine Playground, a wiki where all the users of Arduino can
Development Tools contribute and benefit from their collective research.
Arduino on other Atmel Chips
Interfacing With Hardware

« Output

o Input

* User Interface

« Storage

* Communication
Power supplies

« General
Interfacing with Software
User Code Library

« Snippets and Sketches

« Libraries

« Tutorials

(latest) Arduino UNO

Hardware

Cheap, fast and open

AVR Atmega 328 Microcontroller
C-Programming

Programming via USB

Power supply via USB or external

Arduino Uno

Arduino Uno Characteristics

32 kByte Flash Memory
1 kByte EEPROM

2 kByte SRAM

16 MHz Clock

Inputs and Outputs

— 14 digital Inputs/Outputs
— 6 analog Inputs

— 6 PWM-Outputs

— 12C-Bus, serial Bus (TX/RX)

Arduino Uno

Arduino Uno R3 Board

SCL SDA | | Digital Inputs and Outputs

Reset Button

LED at Pin 13

USB Connector i L - N -
‘ _ : ax Q=i ARDUINO . ' ;:;

LR

TX/RX LEDs 53 2
P.

A= WWW.ARDUINO.CC - MADE Il "ALV

R R N . ——————— -

H @ m ian O

Analog Inputs

10.10.2012 Arduino Uno 5

Arduino Uno R3 Schematic

+5U

1

e LMU3EE]

]

=
b=
[|
L
[=
q

o
RN

RNZA

YELLOKW

L

Lspuce TRE 450
T T

o
@

Arduino(TM) UNO Rev3

FOM34H

USBE-B_TH

10.10.2012

GND MC/FB [—

LPZ3985-330BUR

£
NLEBS0D] Y OC >R

GND

ON/OFF l C3

Ui

NCP11175TSRT36 +8u
3 4

IN QUT

tpczC2

I+7u19

GO GND

22—
RM3B 2ZR
S—§5.
RMEE 22R

Arduino-Software

Check 25.Blinkc | Arduino 1.0.1 Serial Monitor

Datei Bearbeiten Sketch Tools Hilfe

(Compile) ON

Upload to
I/O Board

o the gsetup routirne runs once wheh ¥ou press reset:

wold setup () {
NeW A4 initialize the digital pin az an output.
pinMode (led, QUTEUT):
+

Open

J4 the loop routine runs owver and over again forewer:

wvoid loop () !

Save digitalWrite(led, HIGH): A4 turn the LED on (HIGH is the woltag
delay (1000 ; A4 wait for a second
digitallWlrite(led, LOW): A4 turn the LED off by makinhg the walt
delay(1000) ; A7 wait for a second
1 £
M
4 | >

Status Messages

Arduino Una o

10.10.2012 Arduino Uno 7

Installation

Unzip of the Arduino-software
Connection of the Arduino-board

Installation of the drivers (administrator rights
needed)

Run the Arduino-software
Go on........

Arduino Uno

Connection of the Arduino-Board

10.10.2012 Arduino Uno 9

Installing drivers

Installing drivers for the Arduino Uno with Windows7, Vista, or XP:

Plug in your board and wait for Windows to begin it's driver installation
process. After a few moments, the process will fail.

Click on the Start Menu, and open up the Control Panel.

While in the Control Panel, navigate to System and Security. Next, click on
System. Once the System window is up, open the Device Manager.

Look under Ports (COM & LPT). A You should see an open port named
"Arduino UNO (COMxx)"

Right click on the "Arduino UNO (COmxx)" port and choose the "Update
Driver Software" option.

Next, choose the "Browse my computer for Driver software" option.

Finally, navigate to and select the Uno's driver file, named
"ArduinoUNO.inf", located in the "Drivers" folder of the Arduino Software
download (not the "FTDI USB Drivers" sub-directory).

Windows will finish up the driver installation from there.

Arduino Uno

http://arduino.cc/en/Main/ArduinoBoardUno
http://arduino.cc/en/Main/ArduinoBoardUno
http://arduino.cc/en/Main/ArduinoBoardUno

10.10.2012

Selecting the COM-Port

B8 sketch_octO/a | Arduino 1.0.1

Datei Bearbeiten

sketch_octl7a

Sketch Bl

Aukomatisch Formatieren Strg+T

Sketch atchiviersn
Kodierung reparieren & neu laden

Serial Monitor Strg+Umnschalt+M

Programmer

Bootloader installieren

Arduing Uno

Arduino Uno

COMI1
COM3
oM
COmMS
COME
COM7
COM10
oML
COM1Z
COML3
COM14
COM20
oMl
COMz2

11

Selecting the Board

=@ sketch_oct07a | Arduino 1.0.1
Ciatei Sketch Bl

Bearbeiten

Automatisch Formatieren
Sketch archivieren
Kodierung reparieren & neu laden

Serial Monitar Strg+Umschalt+M

sketch_oct0¥a

Board p & Arduino Uno

Serieller Park » Arduino Duerilanove w) ATmega3zs

Arduino Diecimila or Duemilanowve w) ATmegalés
Programmer]

d Arduino Mano v ATmega3zs
Arduino Mano w) ATmegalss

Arduino Mega 2560 or Mega ADE

A e o RAL - AT o 4 AEm

Bootloader installieren

12

Status-Messages

Binary sketch size: 1118 bytes (of a 14336 byte morimum)

Upload done

Serial port '/dev/tty.usbserial-A4001ga8' not found. Did you select the
Wrong serial port

Wrong microcontroller found. Did you select the right board from the

BLMAFY SEETLN S1LE. o600 DYTES LUOT O 7100 UYyTE WK LELm)

Wrong board

Arduino Uno

Troubleshooting

 Press the reset-button on

Arduino and try again

* Check the serial port (Connection and
number)

* Read the red text (Debugging output) at the
bottom to determine the problem

* The status area shows what is wrong

10.10.2012 Arduino Uno 14

10.10.2012

Program Examples

B@ sketch_octO7a | Arduino 1.0.1

Bearbeiten Sketch Tools Hilfe

Meu

Skrg+h
Gffnen. .. Skrg+0
Sketchbook »

01 .Basics

schliefen Skrg+Hw 02 Digital »

Speichern Strg+5 03 Analog
Speichern unter... Strg-+Hlmschalk+5 ommunication k
Upload Skrg+U 05, Contral p| Dimmer
Upload mit Prograrmer Skrg-+HUmschalk+1 06, 5ensors ¥ Graph
07 Display MIDI
Papierformat Strg-+Umschalt-+HP 08.5trings » MultiSerialMega
Drucken Strot+h 09.USB(Leonardo) »| PhysicalPixel
Einstellungen Skrg+Comma ArduinolsP ReadAsCIIString
SerialCallResponse
Beenden strg+Q DateTime SerialCallResponsensCIl
EEPROM SerialEvent
Ethernet WirkualColorMixer
Firrnaka
LiquidiCrvstal
=]
SErvo

SoftwareSerial
SPI
Skepper

Tirmne
TimeAlarms

* T T T ¥ T ¥ ¥ W ¥ ¥ ¥ F

Wire

Arduing Uno on L

Arduino Uno

15

Program-Structure

Declaration of variables

int ledPin = 13; /I LED connected to digital pin 13

Initialization
— setup() Set the inputs and outputs

void setup() I/l run once, when the sketch starts
{

pinMode(ledPin, OUTPUT); /I sets the digital pin as output
}

Main program
— loop() Loop without end

void loop() /[run over and over again

{
digitalWrite(ledPin, HIGH); I sets the LED on
delay(1000); /[waits for a second
digitalWrite(ledPin, LOW); /I sets the LED off
delay(1000); /[waits for a second

}

Arduino Uno

10.10.2012

The blinking LED

Elink

The basic Arduino example. Turns on an LED on for one second,
then off for one second, and so0 on... We use pin 13 because,
depending on your Arduino board, it has either a built-in LED
or a built-in resistor so that vou need only an LED.

http: fAwmmr. arduino. cofen/Tutorial /Elink

int ledPin = 13; /4 LED conmected to digital pin 13

vold setup () S4 run once, when the sketch starts
{
pintiode [ledPin, OUTEOT) ; S/ zetz the digital pin as output

wold loop () run over and over again

{
digitalWlrite(ledPin, HIGH): zets the LED on
delav(l000]) ; waits for a second
digitalrite(ledPin, LOW): zets the LED off
delay(l000) waitz for a second

17

10.10.2012

Hardware

Arduino Uno

18

Preparing special pins

Power Supply

* From USB (Current is limited to 500 mA)

* External power supply (Uno switches
automatically) (V,, and GND or power jack)

Battery « D
AR

Diecimila

10.10.2012 Arduino Uno

20

Rules for the Development

e First draw the circuit

* Program the Arduino before you connect the
inputs and outputs!

* |f you have different power supplies connect the
different GNDs if necessary

e Connect and test the circuit on the solderless
board before you connect it to the Arduino

* Connect the power supplies when the circuit is
complete and tested

10.10.2012 Arduino Uno 21

Digital and Analog Input/Output

Digital 1/0

pinmode(pin, mode) - initialization
digitalWrite(pin, value)

int digitalRead(pin)

Analog 1/0

analogReference(type) - initialization
int analogRead(pin)

analogWrite(pin, value) - PWM

10.10.2012 Arduino Uno

22

Digital Output
 Make an external LED at pm 13 blmkmg

?VCC (from USB)

Arduino Uno

Pin D13 g I

f\\
- GND

ZﬁVCC (from USB)

* Write a program for a P —
traffic light with 3 LEDs Pin D6

Pin D5
Pin D4

- GND

10.10.2012 Arduino Uno

23

Digital Input

* Adigital input floats between Oand 5V, ifitis
not connected

e Aresistor pulls an input to 5V (pull up) or to
GND (pull down)

e Using a pullup-resistor the switch pushes the
iInput to GND

e Using a pulldown-resistor the switch pushes
the inputto 5V

Arduino Uno

Pullup-resistor

VCC

GND

10.10.2012

Digital Input

Pulldown-resistor

? Vee

GND

25

Tasks for Digital Input

* Connect a switch to digital input 2 of the
Arduino

* The switch controls the function of the traffic
light:
High: Normal function
Low: Yellow light blinking

Arduino Uno

Digital Output expanded

* Maximum of an ATmega8 output:

5V and 40 mA

* The output can be expanded by a relay or a
transistor:

Relay: 5V type
Transistor: Emitter to GND

Base resistor

Arduino Uno

Tasks for Digital Output expanded

Connect the 12 V motor to pin 6 of the Arduino
first over a relay and then over a npn-transistor
(BD 139).

For the motor use an external supply voltage
(don’t forget to connect the different GNDs!).

Switch the motor on and off by a switch at pin 11
of the Arduino.

The base resistor of the transistor is 1 kQ).

Protect the Arduino and the transistor by a
protective diode!

Arduino Uno

A/cc (from USB)
1N4149

/N

4,7 kQ

‘| GND

29

V. (from USB)
ﬁk M ZS 1N4149

4,7 kQ
1kQ

BD139

'] GND 1

PWM Output

e Pulse Width Modulation
 Characteristics:

P B
§800R
1 ‘\
> -
o
-] ~
c 2
[}
=
© .
-~ "'q
2
$ $
:

Pulse width range . .,

i level = I?-:
Pulse period o | %ﬂf“i_
Voltage levels eriod «::: 3

E
e~

* Average is like an analog voltage U,,
U,, = width/period *(HIGH — LOW) + LOW
 For PWM use the analogWrite() instruction

10.10.2012 Arduino Uno 31

Analog Input

* The ATmega 168 has 6 ADC inputs
* The maximum input range
isfromOVto5V
* The resolution is 10 bit
(1024 values)
* The reference voltage is variable

10.10.2012 Arduino Uno 32

The ADC of the Arduino

* 0= Uy < Upee
* Uper:1.1V,3.3Vand5V

analogReference(type)

Description

Configures the reference voltage used for analog input. The analogRead() function will
return 1023 for an input equal to the reference voltage. The options are:

DEFAULT: the default analog reference of 5 volts.

INTERNAL: an built-in reference, equal to 1.1 volts on the ATmegal68 and 2.56 volts on the
ATmega8.

EXTERNAL: the voltage applied to the AREF pin is used as the reference.

Parameters

type: which type of reference to use (DEFAULT, INTERNAL, or EXTERNAL).

Arduino Uno

Characteristics of the Voltmeter

* High-impedance input

* |nput-range:-5Vto+5V
* Upg=oV

* Outputon LCD:

10.10.2012 Arduino Uno

Blockdiagram of the Voltmeter

LCD

35

Pre-Ampilifier (Level-Shifter)

R1LR2
- D - D

ouT

Arduino Uno

Calculation of the PreAmp

U = U R, tu Ry
REF IN + ouT +
Rl Rz Rl R2
_ R,
Un=5YV, UOUTZOV: UREF -5V
R, TR
1 2
= RZ Rl
Un=-5V,Ugyr =5V UO__5V N T 5V N
Rl RZ Rl RZ
R R R
5V +2 Y +1 =5V +2
Rl RZ Rl RZ Rl R2
- R, + R, = R,
R1+R2 R1+R2 R1+R2
= — = RZ = 5
R,=2R,; =>U, =5V : ~v
2R, *R, 3

Arduino Uno

Pre-Ampilifier (Level-Shifter)

.
20 KQ [_ 10 KQ
5V - D
N ;
TLO72
10 KQ // Y REF
e

Arduino Uno

ouT

ouT

Protection Circuit

1 KQ

S5V

JAN

/N BAT 85

/\ BAT 85

Arduino Uno

—— 4/0nF

Pin A2

Connection of the LCD-Modules

16 x 2

0O O
LC Display
2x16 Zeichen

10.10.2012 Arduino Uno 40

Pins of the Adaptor

LCD-Module Description Symbol 20-Pin-Adapter Arduino Uno
Digital pin
GND AN 2 GND

1

2 +5V VDD 1 5V
3 Contrast0,3..1,2V VEE N.C. N.C.
4 H=Data/L=Command RS 3 7

5 H = Read / L = Write R/W N.C. N.C.
6 Enable E 5 6

7 LSB (8 Bit) DO N.C. N.C.
8 D1 N.C. N.C.
9 D2 N.C. N.C.
10 D3 N.C. N.C.
11 LSB (4 Bit) D4(DO) 12 5
12 D5(D1) 11 4
13 D6(D2) 14 3
14 MSB D7(D3) 13 2

10.10.2012 Arduino Uno 4l

Program Example for the LCD-Module

CBX

23 | CD16 | Arduino 1.0.1
Datei Bearbeiten Sketch Tools Hife

LCD16§

gt
LiquidCrystal Library - Hello World
Demonstrates the use a l6x2 LCD display.

The LifquidCrystal library works with all LCD displays that
are compatible with the Hitachi HD44780 driwver. There are many of thew out there, and you can usually
tell them by the lé-pin interface.

This sketch prints "Hello World!™ to the LCD and shows the time.

The circuit:

LCD RS pin to digital pin 7
* LCD Enable pin to digital pin &
* LCD D4 pin to digital pin 5
LCD D5 pin to digital pin 4
LCDIr D6 pin to digital pin 3
LCD D7 pin to digital pin 2
LCD B/W pin to ground

L0E resistor:

ends to +57 and ground
wiper to LCD V0 pin ipin 3)

P N]

Library originally added 13 Apr 2003 by Dawid A. Mellis; library modified 5 Jul 2009 by Limor Fried (http:/Awnmr. ladyad
example added 9 Jul 2009 by Tom Igoe; modified 10 Oct 2012 by Franz Schubert

=

/¢ include the library code:
#include <LifuidCrystal.hs

/4 initialize the library with the numbers of the interface pins
LiguidCrystal led(?, &, &5, 4, 3, 2):

woid setup() {
/¢ set up the LCD's mumber of coluwns and rows:
led.begin(le, 2):
/4 Print a message to the LCD.
led.print(“hello, world!™);

}

woid loop() {
/4 set the cursor to column 0, line 1
/4 (noter line 1 iz the second row, since counting begins with 0):
led. setCursor (0, 1);
/¢ print the number of seconds since reset:
led.oprint(millis() 1000 ;

|~

10.10.2012

LiquidCrystal Library

This library allows an Arduino board to control
LiquidCrystal displays (LCDs) based on the XXX
chipset, which is found on most text-based
LCDs.

The library works with in either 4- or 8-bit mode
(i.e. using 4 or 8 data lines in addition to the

rs, rw, and enable control lines).

Note: We use 4-bit mode.

Function
LiquidCrystal()
egin

lear

ome
setCursor

:

(@]

1

Arduino Uno

42

file:///D:/HAW/LEHRE/arduino-0015-win/arduino-0015-win/arduino-0015/reference/LiquidCrystalConstructor.html
file:///D:/HAW/LEHRE/arduino-0015-win/arduino-0015-win/arduino-0015/reference/LiquidCrystalConstructor.html
file:///D:/HAW/LEHRE/arduino-0015-win/arduino-0015-win/arduino-0015/reference/LiquidCrystalClear.html
file:///D:/HAW/LEHRE/arduino-0015-win/arduino-0015-win/arduino-0015/reference/LiquidCrystalClear.html
file:///D:/HAW/LEHRE/arduino-0015-win/arduino-0015-win/arduino-0015/reference/LiquidCrystalHome.html
file:///D:/HAW/LEHRE/arduino-0015-win/arduino-0015-win/arduino-0015/reference/LiquidCrystalSetCursor.html
file:///D:/HAW/LEHRE/arduino-0015-win/arduino-0015-win/arduino-0015/reference/LiquidCrystalSetCursor.html
file:///D:/HAW/LEHRE/arduino-0015-win/arduino-0015-win/arduino-0015/reference/LiquidCrystalWrite.html
file:///D:/HAW/LEHRE/arduino-0015-win/arduino-0015-win/arduino-0015/reference/LiquidCrystalPrint.html

Characteristics of the Thermometer

+ NTC:

27,25
50 4,162
100 0,949

* Input-range: 0 °Cto 100 °C
* Buzzer alarm, if temperature encreases 90 °C
* Outputon LCD:

4|2 °|C

1/0(8 °|F

10.10.2012 Arduino Uno

Tasks for the Thermometer

Download the datasheet of the NTC-resistor

Linearize the characteristic of the NTC in the
range from 0 °C to 100 °C by connecting a

serial resistor R, = R, of the NTC.
R

Develop the resulting characteristic m = "
R, TR

L

Substitute the resulting characteristic by a
straight line m; = f(O)

Arduino Uno

Q/°C Ro/kQ m, m; Deviation/% 30
L\R@/ko
0 27,25 |0,86750287|0,86761173 |-0,01254866 25
10 17,95 |0,81177641|0,79980778 | 1,47437473 \
20 12,09 0,74390844 | 0,73200384 | 1,60027727 20
30 8314 |0,66639949| 0,6641999 |0,33006975 . \
40 5829 |0,58342508|0,59639596 | -2,2232299 > \
50 4,162 0,5 0,52859202 |-5,71840461 10
60 3,022 |0,42065702|0,46078808 |-9,54009218 \
70 2,229 |0,34877171|0,39298414 |-12,6766107 5
80 1,669 |0,28622878| 0,3251802 |-13,6084935 *‘__‘
90 1,266 |0,23323508 | 0,25737626 |-10,3505803 0
100 0,9737 |0,18959441 |0,18957232 |0,01164949 0 20 40 60 80 g@/oc 100
1 Deviation/%
0,9
0,8
0'7 T T T T
06) 0 20 \d() 60 80 AO
0'5 mL -4 \ O/oc /
0:4 X mT -6 \\ /
03 IR E N\ /
0,2 \ 10 AN J/
’ -12
01 iy ~V
O T T 1
0 60 80 100 ©/°C -16
10.10.2012 Arduino Uno 45

10.10.2012

V. (from USB)

46

#include <LiquidCrystal.h>

LiquidCrystal lcd(12, 11, 10, 5, 4, 3, 2);
int inputPin = 2;

int readVoltage;

float outputvValue;

float m;

void setup () {
readVoltage = 0;
outputvValue = 0;
m = 0.143f; //slope of our approximated line function

lcd.begin(8, 2);
Serial.begin (9600) ;
}
void loop () {
readVoltage = 1023 - analogRead (inputPin);
//the input value is inverted so that it increases with temperature
outputValue = m*((float)readVoltage - 223.0f) + 11.1f;
// the line function maps the correct temperatures to our input
lcd.setCursor (0,0);
delay (100);
lcd.print (outputvValue, DEC) ;
led.print (".");
lcd.print ((int) (outputValue*100) %100, DEC) ;
lcd.print (" C ")
delay (100);
Serial.println (outputValue) ;

10.10.2012 Arduino Uno

Tasks for Analog Input and PWM Output

Dimm an LED with a potentiometer
Check the function of the multicolour LED

Write a program for controlling the colour of the
multicolour LED with a potentiometer

Control the rpm of the DC-motor with a
potentiometer

Sense the dark with the photoresistor

Write a program for the piezo buzzer to play a
melody

Arduino Uno

int potiPin = 2;

int bluePinl = 6;

int bluePin2 = 3;

int greenPin = 9;

int redPin = 5;

int readVoltage;

void setup() {
readVoltage = 0;
pinMode(bluePinl,OUTPUT);
pinMode(bluePin2, OUTPUT);
pinMode(greenPin,OUTPUT);
pinMode(redPin,OUTPUT);
Serial.begin(9600);

}
void loop() {
int i=0;
readVoltage = analogRead(potiPin);

if(readVoltage/128 >= 6){
analogWrite(redPin, 255);
analogWrite(greenPin, (128*7 - readVoltage)*2);
analogWrite(bluePin1, 0);
analogWrite(bluePin2, 0);
}
else{
if(readVoltage/128 >= 5 && readVoltage/128 < 6){
analogWrite(redPin, (readVoltage - 128*5)*2);
analogWrite(greenPin, 255);
analogWrite(bluePin1, 0);
analogWrite(bluePin2, 0);
}
else{
if(readVoltage/128 >= 4 && readVoltage/128 < 5){
analogWrite(redPin, 0);
analogWrite(greenPin, 255);
analogWrite(bluePinl1, (128*5 - readVoltage)*2);
analogWrite(bluePin2, 0);
1

10.10.2012

else{
if(readVoltage/128 >= 4 && readVoltage/128 < 5){
analogWrite(redPin, 0);
analogWrite(greenPin, (128*5 - readVoltage)*2);
analogWrite(bluePinl, 255);
analogWrite(bluePin2, 0);
}
else{
if(readVoltage/128 >= 3 && readVoltage/128 < 4){
analogWrite(redPin, (128*4 - readVoltage)*2);
analogWrite(greenPin, 0);
analogWrite(bluePinl, 255);
analogWrite(bluePin2, 0);
}
else{
if(readVoltage/128 >= 2 && readVoltage/128 < 3){
analogWrite(redPin, 255);
analogWrite(greenPin, (128*3 - readVoltage)*2);
analogWrite(bluePin1, 255);
analogWrite(bluePin2, 0);
}
else{
analogWrite(redPin, 255);
analogWrite(greenPin, 255);
analogWrite(bluePin1, 255);
analogWrite(bluePin2, 0);

if(readVoltage/128 >= 4 && readVoltage/128 < 7){
analogWrite(greenPin, (7*128 - readVoltage)/4);

}

else{
analogWrite(greenPin, 0);

}

Serial.printIn(readVoltage/128);

1

Arduino Uno

49

int photoDiode = 2;

int buzzerPin = 3;

int readVoltage;

void setup () {
readVoltage = 0;
pinMode (buzzerPin, OUTPUT) ;
Serial.begin (9600);

}

void loop () {

readVoltage = analogRead (photoDiode) ;

if (readVoltage > 60) {
analogWrite (buzzerPin, 40) ;
delay (1000) ;
analogWrite (buzzerPin, 80) ;
delay (200) ;
analogWrite (buzzerPin, 120);
delay (500) ;
analogWrite (buzzerPin, 200) ;
delay (100) ;

}
Serial.println (readVoltage) ;

10.10.2012

Arduino Uno

50

10.10.2012

C
d

()

O T o 09

Notes
note | frequency/Hz | period/us |

261
294
329
349
392
440
493
523

3830
3400
3938
2864
2550
2272
2038
1912

51

ﬁk\/cc (from USB)

10 kQ

GND

1kQ

BD139

52

10.10.2012

V. (from USB)

220 Q

53

Piezo Buzzer as Sensor

Introduction

e Piezo buzzers exhibit the reverse piezoelectric effect.

e The normal piezoelectric effect is generating electricity
from squeezing a crystal.

e Can get several thousand volts, makes a spark

Piezo Knock Sensor

e To read a piezo you can connect it to an analog input, but: - You
need to drain off any voltage with a resistor

e The protection diodes inside the AVR chip protect against the high
voltage

Tasks

e Piezo-sensor: input value -> serial out
e Piezo-sensor: input value -> buzzer frequency

Arduino Uno

10.10.2012

Ve (from USB)

55

Servo Motor

Servos are DC motors with built in gearing and feedback control
loop circuitry. \

Servo Wiring

All servos have three wires:
Black or Brown is for ground.
Red is for power (~4.8-6V).
Yellow, Orange, or White is the signal wire (3-5V).

Tasks

e Pot position 0...180° to servo position and LCD
e Railroad crossing barrier

e Railroad crossing sign (blinking, beep)

Arduino Uno

Library for the Servo Motor 1

Servo library

This library allows an Arduino board to control RC servo motors. Servos have integrated
gears and a shaft that can precisely controlled. Standard servos allow the shaft to be
positioned at various angles, usually between 0 and 180 degrees. Continuous rotation
servos allow the rotation of the shaft to be set to various speeds.

As of Arduino 0017, the Servo library supports up to 12 motors on most Arduino boards
and 48 on the Arduino Mega. On boards other than the Mega, use of the library disables
analogWrite() (PWM) functionality on pins 9 and 10, whether or not there is a Servo on
those pins. On the Mega, up to 12 servos can be used without interfering with PWM
functionality; use of 12 to 23 motors will disable PWM on pins 11 and 12.

In Arduino 0016 and earlier, the Servo library uses functionality built in to the hardware,
and works only on pins 9 and 10 (and does not work on the Arduino Mega). In this case,
if only one servo is used, the other pin cannot be used for normal PWM output with
analogWrite(). For example, in Arduino 0016 and earlier, you can't have a servo on pin 9
and PWM output on pin 10.

Arduino Uno

Library for the Servo Motor 2

Circuit

Servo motors have three wires: power, ground, and signal. The power wire is typically
red, and should be connected to 5V power supply. The ground wire is typically black or
brown and should be connected to a ground pin. The signal pin is typically yellow,
orange or white and should be connected to a digital pin on the Arduino board. Note
servos draw considerable power, so if you need to drive more than one or two, you need
a separate power supply (not the +5V pin on your Arduino!).

Functions
ttach
write
ead
attached()
etach

11

:

10.10.2012 Arduino Uno 28

http://arduino.cc/en/Reference/ServoAttach
http://arduino.cc/en/Reference/ServoWrite
http://arduino.cc/en/Reference/ServoRead
http://arduino.cc/en/Reference/ServoAttached
http://arduino.cc/en/Reference/ServoDetach

Program Example for the Servo Motor

// Sweep
// by BARRAGAN <http: //barraganstudio.com>
#include <Servo.h>
Servo myservo; // create servo object to control a servo
int pos = 0; // variable to store the servo position
void setup()
{
myservo.attach(9); // attaches the servo on pin 9 to the servo object
}
void loop()
{
for(pos = 0; pos < 180; pos +=1) // goes from 0 degrees to 180 degrees
{ // in steps of 1 degree
myservo.write(pos); // tell servo to go to position in variable 'pos'
delay(15); // waits 15ms for the servo to reach the position
}
for(pos = 180; pos>=1; pos-=1) // goes from 180 degrees to 0 degrees
{
myservo.write(pos); // tell servo to go to position in variable 'pos'
delay(15); // waits 15ms for the servo to reach the position
}
}

10.10.2012 Arduino Uno 29

10 kQ

10.10.2012

V. (from USB)

orange

GND

brown

60

Communication

e The I2C Bus
e Serial I/O

Arduino Uno

The 12C Bus I

Introduction

The 12C-bus is a de facto world standard that is now implemented in over 1000 different
ICs manufactured by more than 50 companies. Additionally, the versatile 12C-bus is used
in a variety of control architectures such as System Management Bus (SMBus), Power
Management Bus (PMBus), Intelligent Platform Management Interface (IPMl), and
Advanced Telecom Computing Architecture (ATCA).

12C-bus features
In consumer electronics, telecommunications and industrial electronics, there are often
many similarities between seemingly unrelated designs. For example, nearly every system
includes:
e Some intelligent control, usually a single-chip microcontroller
e General-purpose circuits like LCD and LED drivers, remote 1/O ports, RAM,
EEPROM, real-time clocks or A/D and D/A converters
¢ Application-oriented circuits such as digital tuning and signal processing circuits for
radio and video systems, temperature sensors, and smart cards

NXP Semiconductors: UM10204 12C-bus specification and user manual

Arduino Uno

To exploit these similarities to the benefit of both systems designers and equipment
manufacturers, as well as to maximize hardware efficiency and circuit simplicity, Philips
Semiconductors (now NXP Semiconductors) developed a simple bidirectional 2-wire bus
for efficient inter-IC control. This bus is called the Inter IC or 12C-bus. All 12C-bus
compatible devices incorporate an on-chip interface which allows them to communicate
directly with each other via the 12C-bus. This design concept solves the many interfacing
problems encountered when designing digital control circuits.

[[2

FC 1c 12’
AD or DA General Purpose ;
Convartars 1/ Expandsrs LED Controllers DIF Switches Slave

Wy Voos
1’c

l Repsaters! l

HubsiExtsndars
‘-’c-:c-lj I-lrl
12C Part
Yooz [wia HW or MCUs
(= PCASSM Bit Banging
i I’ ,
Mutiplexsrs l Master Selactar’ Wi
and Switches Demue
12z 8,
I Bus Controllers ‘ MCLUs
: 12C 120
1% LD Drivers !
Sarial EEPROMs fwith 12C3) Reeal Time Clock/ Temparaturs
Calendars Sensors
Voca
SPI
Brid LIART
ridges
I {with 12C) —
LUSE

NXP Semiconductors: UM10204 12C-bus specification and user manual

Arduino Uno

Here are some of the features of the 12C-bus:

¢ Only two bus lines are required; a serial data line (SDA) and a serial clock line (SCL).

¢ Each device connected to the bus is software addressable by a unique address and
simple master/slave relationships exist at all times; masters can operate as master-
transmitters or as master-receivers.

¢ It is a true multi-master bus including collision detection and arbitration to prevent
data corruption if two or more masters simultaneously initiate data transfer.

e Serial, 8-bit oriented, bidirectional data transfers can be made at up to 100 kbit/s in
the Standard-mode, up to 400 kbit/s in the Fast-mode, up to 1 Mbit/s in Fast-mode
Plus, or up to 3.4 Mbit/s in the High-speed mode.

¢ On-chip filtering rejects spikes on the bus data line to preserve data integrity.

¢ The number of ICs that can be connected to the same bus is limited only by a
maximum bus capacitance. More capacitance may be allowed under some conditions.

NXP Semiconductors: UM10204 12C-bus specification and user manual

Arduino Uno

Definition of 12C-bus terminology

Transmitter the device which sends data to the bus
Receiver the device which receives data from the bus

Master the device which initiates a transfer, generates clock signals and terminates a
transfer

Slave the device addressed by a master

Multi-master more than one master can attempt to control the bus at the same time
without corrupting the message

Arbitration procedure to ensure that, if more than one master simultaneously tries to
control the bus, only one is allowed to do so and the winning message is y device addressed
is considered a slave.

Synchronization procedure to synchronize the clock signals of two or more devices

NXP Semiconductors: UM10204 12C-bus specification and user manual

Arduino Uno

The 12C-bus protocol

Two wires, serial data (SDA) and serial clock (SCL), carry information between the devices
connected to the bus. Each device is recognized by a unique address (whether it is a
microcontroller, LCD driver, memory or keyboard interface) and can operate as either a
transmitter or receiver, depending on the function of the device. An LCD driver may be
only areceiver, whereas a memory can both receive and transmit data. In addition to
transmitters and receivers, devices can also be considered as masters or slaves when
performing data transfers. A master is the device which initiates a data transfer on the bus
and generates the clock signals to permit that transfer. At that time, any device addressed
Is considered a slave.

The 12C-bus is a multi-master bus. This means that more than one device capable of
controlling the bus can be connected to it. As masters are usually microcontrollers, let’s
consider the case of a data transfer between two microcontrollers connected to the
12C-bus. VIR e Lop STATC

DRIVER RAM OR
A EEPROM

[sDA |
[scL

MICRO -

GATE CONTROLLER
ARRAY ADC B

NXP Semiconductors: UM10204 12C-bus specification and user manual

Arduino Uno

SDA and SCL logic levels

Due to the variety of different technology devices (CMOS, NMOS, bipolar) that can be
connected to the 12C-bus, the levels of the logical ‘0’ (LOW) and ‘1’ (HIGH) are not fixed
and depend on the associated level of V. Input reference levels are set as 30 % and 70 %
of Vp; V, 15 0.3V and V, is 0.7V .

Some legacy device input levels were fixed at V, = 1.5V and V,, = 3.0 V, but all new devices
require this 30 %/70 % specification.

Data validity
The data on the SDA line must be stable during the HIGH period of the clock. The HIGH or

LOW state of the data line can only change when the clock signal on the SCL line is LOW.
One clock pulse is generated for each data bit transferred.

SDA / X \
scL _/ "-__

data line change
stable; of data
data valid allowed mbasd?

NXP Semiconductors: UM10204 12C-bus specification and user manual

Arduino Uno

START and STOP conditions

All transactions begin with a START (S) and can be terminated by a STOP (P). A HIGH to
LOW transition on the SDA line while SCL is HIGH defines a START condition. A LOW to
HIGH transition on the SDA line while SCL is HIGH defines a STOP condition.

START and STOP conditions are always generated by the master. The bus is considered to
be busy after the START condition. The bus is considered to be free again a certain time
after the STOP condition. The bus stays busy if a repeated START (Sr) is generated instead
of a STOP condition. In this respect, the START (S) and repeated START (Sr) conditions are
functionally identical.

For the remainder of this document, therefore, the S symbol will be used as a generic
term to represent both the START and repeated START conditions, unless Sr is articularly
relevant.

- -

/T TTT\ {ﬁ"SDA

b — | S —

SCL
START condition STOP condition
mbagig
Detection of START and STOP conditions by devices connected to the bus is easy if they
incorporate the necessary interfacing hardware. However, microcontrollers with no such
interface have to sample the SDA line at least twice per clock period to sense the
transition.

NXP Semiconductors: UM10204 12C-bus specification and user manual

Arduino Uno

Byte format

Every byte put on the SDA line must be 8 bits long. The number of bytes that can be
transmitted per transfer is unrestricted. Each byte has to be followed by an Acknowledge
bit. Data is transferred with the Most Significant Bit (MSB) first. If a slave cannot receive or
transmit another complete byte of data until it has performed some other function, for
example servicing an internal interrupt, it can hold the clock line SCL LOW to force the
master into a wait state. Data transfer then continues when the slave is ready for another
byte of data and releases clock line SCL.

T IF T p
—+\ | - --- —\/
SDA | ./ X >< _ X >< \ / \ x X L -X X | X |
| | MSE acknowledgement acknowledgement | Sr |
| | signal from slave signal from receiver | |

| | --
SN VAVANVAVAVANRVAVAVEITAVE [srorp |
L —— ACK ACK L ——
START or STOP or

repeated START byte complete, clock line held LOW repeated START

condition interrupt within slave while interrupts are serviced condition

NXP Semiconductors: UM10204 12C-bus specification and user manual

10.10.2012 Arduino Uno 69

Acknowledge (ACK) and Not Acknowledge (NACK)

The acknowledge takes place after every byte. The acknowledge bit allows the receiver to

signal the transmitter that the byte was successfully received and another byte may be

sent. All clock pulses including the acknowledge 9th clock pulse are generated by the

master.

The Acknowledge signal is defined as follows: the transmitter releases the SDA line

during the acknowledge clock pulse so the receiver can pull the SDA line LOW and it

remains stable LOW during the HIGH period of this clock pulse (see Figure 4). Set-up and

hold times (specified in Section 6) must also be taken into account.

When SDA remains HIGH during this 9th clock pulse, this is defined as the Not

Acknowledge signal. The master can then generate either a STOP condition to abort the

transfer, or a repeated START condition to start a new transfer. There are five conditions

that lead to the generation of a NACK:

1. No receiver is present on the bus with the transmitted address so there is no device to
respond with an acknowledge.

2. The receiver is unable to receive or transmit because it’s performing some real-time

function and is not ready to start communication with the master.

During the transfer the receiver gets data or commands that it does not understand.

During the transfer, the receiver cannot receive any more data bytes.

5. A master-receiver needs to signal the end of the transfer to the slave transmitter.

B W

NXP Semiconductors: UM10204 12C-bus specification and user manual

Arduino Uno

The slave address and R/W bit

Data transfers follow the format shown in the left figure. After the START condition (S), a
slave address is sent. This address is 7 bits long followed by an eighth bit which is a data
direction bit (R/W)—a ‘zero’ indicates a transmission (WRITE), a ‘one’ indicates a request
for data (READ) (refer to the right figure). A data transfer is always terminated by a STOP
condition (P) generated by the master. However, if a master still wishes to communicate
on the bus, it can generate a repeated START condition (Sr) and address another slave
without first generating a STOP condition. Various combinations of read/write formats are
then possible within such a transfer.

-===r-n

|
1
1
1
1
1

L7/ S LU U W A O B U/

—_—————teme e e — a1

&
.4
;
Lo
%
.
oo
[l]
=
g

7

7]

[S——

START ADDRESS R ACK DATA ACHK CATA ACK STOP
condition condition
[el wTRE

L2 | [| |

NXP Semiconductors: UM10204 12C-bus specification and user manual

Arduino Uno

START byte

Microcontrollers can be connected to the 12C-bus in two ways. A microcontroller with an
on-chip hardware 12C-bus interface can be programmed to be only interrupted by requests
from the bus. When the device does not have such an interface, it must constantly monitor
the bus via software. Obviously, the more times the microcontroller monitors, or polls the
bus, the less time it can spend carrying out its intended function.

There is therefore a speed difference between fast hardware devices and a relatively slow
microcontroller which relies on software polling.

In this case, data transfer can be preceded by a start procedure which is much longer than
normal. The start procedure consists of:

e A START condition (S)

e A START byte (0000 0001)

e An acknowledge clock pulse (ACK)

¢ A repeated START condition (Sr).

r— r—
[—I I —I
SDA \ | K dumrrmy I
| - acknowladge |
| (HIGH) I
|| ||
[-- (I
5 MNACK Sr
L 1] L2
ja————START byts 0000 0001 ——] 00220007

NXP Semiconductors: UM10204 12C-bus specification and user manual

Arduino Uno

After the START condition S has been transmitted by a master which requires bus access,
the START byte (0000 0001) is transmitted. Another microcontroller can therefore sample
the SDA line at a low sampling rate until one of the seven zeros in the START byte is
detected. After detection of this LOW level on the SDA line, the microcontroller can switch
to a higher sampling rate to find the repeated START condition Sr which is then used for
synchronization.

A hardware receiver will reset on receipt of the repeated START condition Sr and will
therefore ignore the START byte.

An acknowledge-related clock pulse is generated after the START byte. This is present
only to conform with the byte handling format used on the bus. No device is allowed to
acknowledge the START byte.

Bus clear

In the unlikely event where the clock (SCL) is stuck LOW, the preferential procedure is to
reset the bus using the HW reset signal if your I12C devices have HW reset inputs. If the
12C devices do not have HW reset inputs, cycle power to the devices to activate the
mandatory internal Power-On Reset (POR) circuit.

If the data line (SDA) is stuck LOW, the master should send 9 clock pulses. The device that
held the bus LOW should release it sometime within those 9 clocks. If not, then use the
HW reset or cycle power to clear the bus.

NXP Semiconductors: UM10204 12C-bus specification and user manual

Arduino Uno

The 12C Bus Library

Wire Library
This library allows you to communicate with 12C / TWI devices. On the Arduino, SDA (data
line) is on analog input pin 4, and SCL (clock line) is on analog input pin 5.

Functions

begin()

begin(address)
requestFrom(address, count)
beginTransmission(address)
endTransmission()

send()

byte available()

byte receive()
onReceive(handler)
onRequest(handler)

10.10.2012 Arduino Uno 4

file:///D:/HAW/LEHRE/arduino-0015-win/arduino-0015-win/arduino-0015/reference/WireBegin.html
file:///D:/HAW/LEHRE/arduino-0015-win/arduino-0015-win/arduino-0015/reference/WireBegin.html
file:///D:/HAW/LEHRE/arduino-0015-win/arduino-0015-win/arduino-0015/reference/WireRequestFrom.html
file:///D:/HAW/LEHRE/arduino-0015-win/arduino-0015-win/arduino-0015/reference/WireBeginTransmission.html
file:///D:/HAW/LEHRE/arduino-0015-win/arduino-0015-win/arduino-0015/reference/WireEndTransmission.html
file:///D:/HAW/LEHRE/arduino-0015-win/arduino-0015-win/arduino-0015/reference/WireSend.html
file:///D:/HAW/LEHRE/arduino-0015-win/arduino-0015-win/arduino-0015/reference/WireAvailable.html
file:///D:/HAW/LEHRE/arduino-0015-win/arduino-0015-win/arduino-0015/reference/WireReceive.html
file:///D:/HAW/LEHRE/arduino-0015-win/arduino-0015-win/arduino-0015/reference/WireOnReceive.html
file:///D:/HAW/LEHRE/arduino-0015-win/arduino-0015-win/arduino-0015/reference/WireOnRequest.html

Connection of 12C Master and Slave

b oo ' -
N WNW.ARDUINO.CC ~ MADE IN ITALY

2,2 KQ

SDA
SCL

75

Arduino Uno

10.10.2012

|2C Bus Extender 82B715

DESCRIPTION

The 82B715 is a bipolar integrated circuit intended for application in 12C bus systems. While
retaining all the operating modes and features of the 12C system it permits extension of the
practical separation distance between components on the 12C bus by buffering both the
data (SDA) and the clock (SCL) lines.

The 12C bus capacitance limit of 400pF restricts practical communication distances to a few
meters. Using one 82B715 at each end of longer cables reduces the cable loading
capacitance on the 12C bus by a factor of 10 times and may allow the use of low cost
general purpose wiring to extend bus lengths.

PIN CONFIGURATIONS PINNING
8-Pin Dual In-Line or SO PIN SYMBOL FUNCTION
82B715 1 N.C.
2 Lx Buffered Bus, LDA or LCL
ne M >~ [@] Voo 3 |sx [2C Bus, SDA or SCL
Lx E Z| Ly 4 GND Negative Supply
sx [3] 6] sy > N.C
oND [4] 5] ne. 6 Sy I2C Bus, SCL or SDA
7 Ly Buffered Bus, LCL or LDA
Su00290 8 Veo Positive Supply

PHILIPS Data Sheet

Arduino Uno

Minimum Sub-System with 82B715

| | |
82B715 82B715
| 7 VCC| | T | r 7
| I~ | wal | 1 | | soa | |
SDA% lj;/ — <7
| T T T T,
I | | cC I CABLE I | | I | DEVICE |
o~ LCL 1 | scL_| |
o 1/2 & ¢ e & o 12 L
| L] | | L] | L
| | | |
STANDARD BUFFERED EUFFERED STANDARD
Zc INTERFACE INTERFACE 12e
INTERFACE INTERFACE

PHILIPS Data Sheet

10.10.2012 Arduino Uno 7

Tasks for 12C

The master sends a sign to the slave
The slave answers with the next ASCII sign
Input of the sign via keyboard of the PC

Output to LCD (first row: sign of the master;
second row: sign from the slave)

Watch the signals on SDA and SCL on a scope
(sending a repeating a signal continuously)

Arduino Uno

10.10.2012

MEAS

MEAS-SPECCO

B Put SR £ £
T mzy

79

